Periodic solutions of a singularly perturbed delay differential equation

نویسندگان

  • Mohit H. Adhikari
  • Evangelos A. Coutsias
  • John K. McIver
چکیده

A singularly perturbed differential delay equation of the form ẋ(t) = −x(t)+ f (x(t − 1), λ) (1) exhibits slowly oscillating periodic solutions (SOPS) near the first period-doubling bifurcation point of the underlying map (obtained by setting = 0). For extremely small values of , these periodic solutions resemble square waves, which consist of sharp, O( ) transition layers connecting intervals of approximately unit length. In this article, we obtain analytic expressions for these square-wave periodic solutions, by solving the corresponding transition layer equations, and show that they are in excellent agreement with numerical solutions for a range of values of and λ. We also derive analytic expressions for other periodic solutionswhich are oddharmonics of the SOPS, and numerically exhibit their instability near the first period doubling bifurcation point of themap. The numerical computations were performed using a high accuracy Chebyshev spectral scheme. We give a brief description together with a study of its accuracy and efficiency. © 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer

The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...

متن کامل

A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts

In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...

متن کامل

Transition Layers for Singularly Perturbed Delay Differential Equations with Monotone Nonlinearities

Transition layers arising from square-wave-like periodic solutions of a singularly perturbed delay differential equation are studied. Such transition layers correspond to heteroclinic orbits connecting a pair of equilibria of an associated system of transition layer equations. Assuming a monotonicity condition in the nonlinearity, we prove these transition layer equations possess a unique heter...

متن کامل

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

متن کامل

Periodic solutions of fourth-order delay differential equation

In this paper the periodic solutions of fourth order delay differential equation of the form $ddddot{x}(t)+adddot{x}(t)+f(ddot{x}(t-tau(t)))+g(dot{x}(t-tau(t)))+h({x}(t-tau(t)))=p(t)$  is investigated. Some new positive periodic criteria are given.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008